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Network with n nodes, m edges  
Each node has list of incident edges 
and edge weights. Nodes have 
distinct IDs 
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A network  maintains a subgraph if 
its edges are marked by their 
endpoints 
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Communication: Each node may send 
messages of size O(log n ) to all its 
neighbors in a single step.  
Synchronous vs. Asynchronous 
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UPDATES: 
Insert ({A,D}, edge_weight)               
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Delete edge {E,F}             
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MST (resp. ST) Problem: Maintain a 
minimum spanning forest (resp., 
spanning forest) in a dynamic 
network 
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Main difficulty: 
 How to find a replacement edge 
when a tree edge is deleted 
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Our contribution:  
 
A New Tool 
 for finding, impromptu, a replacement 
edge w.h.p. 
 
for MST: an edge of min cost leaving a 
tree in a graph 
 
for ST: any edge leaving a tree in a graph 
 



Costs:                   MST / ST 
Message complexity    O(n log n) ,  O(n)  (expected) 
 
Preprocessing Time  NONE 
 
Update Time:  O(diam(tree)*log n) , O(diam(tree)) 
expected. 
 
Local memory needed   NONE 
    between updates 
 



previous  distributed 
dynamic MST: 
  

Awerbuch, Cidon, Kutten:1990, 2008 
O(n) messages--First dynamic 
updating  
in o(m) messages per update.  
 
But local memory= 
O(n* degree of node*logn) 
Stores  the forest in each node ; 



 
Static MST/ST thought to 
require m messages! 

Gallagher, Humblet and Spira(1983) 
 O(m+ n log n) messages for building one 
from scratch (asynchronously) 
 
Our method yields O(n log2 n) messages for 
constructing an MST in the synchronous 
model.  
 
NOT KNOWN if m can be avoided for the 
asynchronous model. 
 
 



Talk outline: 
1. KEY IDEA 
2. The Odd hash function 
3. Updating MST 
4. Static MST 
5. Updating ST 
6. OPEN problems for distributed and 
sequential dynamic graphs.  

 



KEY IDEA: 
� C  a maximally connected component of a graph.  
àthe sum of the degrees of the nodes in C is even,  

since every edge incident to a node in C contributes 
2.  
 

� If C is not maximally connected, 
à the sum of degrees of the nodes in C of a 
random subset of edges is odd with prob 1/2.   

 
 



basic communication step: 
broadcast and return 
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How do we randomly sample 
and report results 
efficiently? 
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Odd hash function F 
For any set S, we design hash 
 F:{weights}à{0,1} 
s.t. there is a constant probability 
(1/36) that an ODD number of its 
elements hash to 1, iff S is non empty. 
Else it is 0. 

Recall:  
Goal is to find (min weight) edge with only 
one endpoint in the tree 



Applying the Odd hash 
function F 
Let E’={edges incident to nodes in tree Tx } 
  XOR F(e) (over all e is incident to a node in Tx  
=XOR F(e) (over all e with one endpoint in Tx) 
 
=1 with prob. 1/36 unless the cut is empty. 



Using the ODD Hash function: 
TEST if there is a Replacement edge 

� When a tree edge {X,Y} is deleted, if X<Y 
� X becomes leader, broadcasts Odd hash F to 

other  nodes in tree Tx. 

� Each node applies F to their set of incident 
edges and computes the XOR; 

�  XOR is taken over all nodes in Tx 

� Repeat in parallel O(log n) times to get prob 
error 1/nc 

� Output 1 iff any one XOR =1 



Find min wt replacement 
edge  
(assuming distinct wts) 

� Use binary search over the range of 
possible weights, testing w.h.p each time 
if there is a replacemt edge in that wt 
range and narrowing the range.  

� Return weight when only one is left. 
  



Analysis 
� lg (Weight range) tests* cost of test 

� Cost of test = initial cost of sending 
log n hash functions, + 

  + 1 broadcast and return for each          
 phase of the binary search 

� Total =O(n log2 n) messages 



Constructing the Odd hash 
function 

� Let U be the universe of elements.  
� S a subset of U.  
� F(x)à {0,1} 
� We want: 

XOR{y in S} F(y) =1  

iff S is non empty 



Odd hash function F 
 Obvious approach takes O(log n) hashes 

 
F has two parts, 
�  a 2-wise independent hash function 
                           h: U à U 
�  t,  a random element of U 
DEF: F(s)=1 iff h(s) <  t 
 
Note: F can be described in O(log n) bits.  



Why F is an Odd hash 
function  
� h hashes UàU 
� Imagine 2|S| equal sized intervals. 

Exactly one x in I, 
 in middle third 

T lands in some I, in top third or bottom third 



CASE: F works if 
Parity of elements hashed to intervals left of I 
is     
�     Odd and t is in bottom third or 
�     Even and t is in top third 

Exactly one x in I, x is in 
middle third 

T lands in some I, and either top third or bottom  
third of I 



Static synchronous MST alg 
� While I < log n 
� Repeat: 
� Each component finds min wt edge incident 

to it, sends messgage to other endpoint,and 
waits n time steps. Then the found edges are 
inserted to form larger components. 

Log n phases, each takes log n broadcasts and returns, 
for a total of O(n log2 n) expected message 
communication.  
 



Find any edge in  
expected O(1) broadcasts and 
returns 
STEP 1: (IF step) Determine if there is a 
replacement edge w.h.p. 
� Use deterministic amplification to send out  
 O(log n) bits which can be used by individual 
nodes to deterministically generate log n Odd 
Hash functions s.t one is good w.h.p.  
� Return log n outputs using ONE return  



STEP 2: (find) If there is a 
replacement edge, find it 

� Broadcast a single 2-wise independent hash 
function h 

� For i=0,…, 2lg n, every node x computes one 
word whose ith bit = 

XORy incindent to x h(y) ≤ 2i 

� If XOR over tree ≠ 0, min ß first i ≠0 
� Test if there is exactly one edge with  

  h(y) ≤ 2min.  If so, return it.  
�  Else Repeat find.  

 
 



Open problem and discussion 
 
� Can we avoid the O(m) communication costs 

of Gallagher for the asynchronous static 
model?  

� Why this method is more complicated for 
sequential dynamic graph problem 

� How the sequential dynamic graph method 
is  not fully understood 



Open problems for 
Sequential dynamic ST 
� How to apply it to MST 
� How to bring it down to O(log3 n)? 
� Can we remove the tiers?  


