
1

Impromptu Updating of MST and ST in a
Distributed Dynamic Graph

Valerie King, University of Victoria
Joint work with Ben Mountjoy, Mikkel
Thorup and Shay Kutten

Network with n nodes, m edges
Each node has list of incident edges
and edge weights. Nodes have
distinct IDs

G

F

C

D E
A

A network maintains a subgraph if
its edges are marked by their
endpoints

G

F

C

D E
A

Communication: Each node may send
messages of size O(log n) to all its
neighbors in a single step.
Synchronous vs. Asynchronous

F

C

D E
A

UPDATES:
Insert ({A,D}, edge_weight)

F
D E

A
2

Delete edge {E,F}

A
F

D E

MST (resp. ST) Problem: Maintain a
minimum spanning forest (resp.,
spanning forest) in a dynamic
network

G

F

C

D E
A

Main difficulty:
 How to find a replacement edge
when a tree edge is deleted

G

F

C

D E
A

Our contribution:

A New Tool
 for finding, impromptu, a replacement
edge w.h.p.

for MST: an edge of min cost leaving a
tree in a graph

for ST: any edge leaving a tree in a graph

Costs: MST / ST
Message complexity O(n log n) , O(n) (expected)

Preprocessing Time NONE

Update Time: O(diam(tree)*log n) , O(diam(tree))
expected.

Local memory needed NONE
 between updates

previous distributed
dynamic MST:

Awerbuch, Cidon, Kutten:1990, 2008
O(n) messages--First dynamic
updating
in o(m) messages per update.

But local memory=
O(n* degree of node*logn)
Stores the forest in each node ;

Static MST/ST thought to
require m messages!

Gallagher, Humblet and Spira(1983)
 O(m+ n log n) messages for building one
from scratch (asynchronously)

Our method yields O(n log2 n) messages for
constructing an MST in the synchronous
model.

NOT KNOWN if m can be avoided for the
asynchronous model.

Talk outline:
1. KEY IDEA
2. The Odd hash function
3. Updating MST
4. Static MST
5. Updating ST
6. OPEN problems for distributed and
sequential dynamic graphs.

KEY IDEA:
� C a maximally connected component of a graph.
àthe sum of the degrees of the nodes in C is even,

since every edge incident to a node in C contributes
2.

� If C is not maximally connected,
à the sum of degrees of the nodes in C of a
random subset of edges is odd with prob 1/2.

basic communication step:
broadcast and return

J

H

G

F

C

D E
A

How do we randomly sample
and report results
efficiently?

J

H

G

F

C

D E
A

Odd hash function F
For any set S, we design hash
 F:{weights}à{0,1}
s.t. there is a constant probability
(1/36) that an ODD number of its
elements hash to 1, iff S is non empty.
Else it is 0.

Recall:
Goal is to find (min weight) edge with only
one endpoint in the tree

Applying the Odd hash
function F
Let E’={edges incident to nodes in tree Tx }
 XOR F(e) (over all e is incident to a node in Tx
=XOR F(e) (over all e with one endpoint in Tx)

=1 with prob. 1/36 unless the cut is empty.

Using the ODD Hash function:
TEST if there is a Replacement edge

� When a tree edge {X,Y} is deleted, if X<Y
� X becomes leader, broadcasts Odd hash F to

other nodes in tree Tx.

� Each node applies F to their set of incident
edges and computes the XOR;

�  XOR is taken over all nodes in Tx

� Repeat in parallel O(log n) times to get prob
error 1/nc

� Output 1 iff any one XOR =1

Find min wt replacement
edge
(assuming distinct wts)

� Use binary search over the range of
possible weights, testing w.h.p each time
if there is a replacemt edge in that wt
range and narrowing the range.

� Return weight when only one is left.

Analysis
� lg (Weight range) tests* cost of test

� Cost of test = initial cost of sending
log n hash functions, +

 + 1 broadcast and return for each
 phase of the binary search

� Total =O(n log2 n) messages

Constructing the Odd hash
function

� Let U be the universe of elements.
� S a subset of U.
� F(x)à {0,1}
� We want:

XOR{y in S} F(y) =1

iff S is non empty

Odd hash function F
 Obvious approach takes O(log n) hashes

F has two parts,
�  a 2-wise independent hash function
 h: U à U
�  t, a random element of U
DEF: F(s)=1 iff h(s) < t

Note: F can be described in O(log n) bits.

Why F is an Odd hash
function
� h hashes UàU
� Imagine 2|S| equal sized intervals.

Exactly one x in I,
 in middle third

T lands in some I, in top third or bottom third

CASE: F works if
Parity of elements hashed to intervals left of I
is
�  Odd and t is in bottom third or
�  Even and t is in top third

Exactly one x in I, x is in
middle third

T lands in some I, and either top third or bottom
third of I

Static synchronous MST alg
� While I < log n
� Repeat:
� Each component finds min wt edge incident

to it, sends messgage to other endpoint,and
waits n time steps. Then the found edges are
inserted to form larger components.

Log n phases, each takes log n broadcasts and returns,
for a total of O(n log2 n) expected message
communication.

Find any edge in
expected O(1) broadcasts and
returns
STEP 1: (IF step) Determine if there is a
replacement edge w.h.p.
� Use deterministic amplification to send out
 O(log n) bits which can be used by individual
nodes to deterministically generate log n Odd
Hash functions s.t one is good w.h.p.
� Return log n outputs using ONE return

STEP 2: (find) If there is a
replacement edge, find it

� Broadcast a single 2-wise independent hash
function h

� For i=0,…, 2lg n, every node x computes one
word whose ith bit =

XORy incindent to x h(y) ≤ 2i

� If XOR over tree ≠ 0, min ß first i ≠0
� Test if there is exactly one edge with

 h(y) ≤ 2min. If so, return it.
�  Else Repeat find.

Open problem and discussion

� Can we avoid the O(m) communication costs

of Gallagher for the asynchronous static
model?

� Why this method is more complicated for
sequential dynamic graph problem

� How the sequential dynamic graph method
is not fully understood

Open problems for
Sequential dynamic ST
� How to apply it to MST
� How to bring it down to O(log3 n)?
� Can we remove the tiers?

